PHYSICAL REVIEW E 79, 031124 (2009)

Statistical thermodynamics of a two-dimensional relativistic gas

Afshin Montakhab,>l< Malihe Ghodrat, and Mahmood Barati
Department of Physics, College of Sciences, Shiraz University, Shiraz 71454, Iran
(Received 7 October 2008; published 30 March 2009)

In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the
general problems associated with relativistic particle collisions and is therefore an ideal system to study
relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation,
concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the
rest frame (I') as well as the moving frame (I'’). Our results confirm that Jiittner distribution is the correct
generalization of Maxwell-Boltzmann distribution. We obtain the same “temperature” parameter 3 for both
frames consistent with a recent study of a limited one-dimensional model. We also address the controversial
topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame,
relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclu-
sive in deciding on a correct temperature transformation law (if any).
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I. INTRODUCTION

The question of how thermodynamic properties transform
in a moving coordinate system were raised soon after Ein-
stein’s fundamental paper in 1905 [1]. In no more than half a
century the introduction of several relativistically consistent
generalization of thermodynamics led to such a confusing
atmosphere in which one could not decide whether a moving
body appears cooler, hotter, or at the same temperature as the
body at rest. The most cited view is presented by Planck [2]
and Einstein [3], who believed that temperature of a moving
body would be Lorentz contracted. A different view was pro-
posed later by some authors notably Ott [4] and Arzeliés [5],
suggesting that a body in motion would appear relatively hot.
Finally, in 1966 Landsberg [6,7] put forth the third sugges-
tion, namely, the Lorentz-invariant temperature view. How-
ever, 30 years later Landsberg and Matsas [8,9] and recently
Sewell [10] proposed another view, that of nonexistence of
universal Lorentz transformation of temperature that further
intensified the controversies over the subject.

Since its early days relativistic thermodynamics has
changed from a theoretically interesting problem to a practi-
cally important subject due to its application in the proper
interpretation of experiments in high energy and astrophysics
[11-13]. Nevertheless, there is still no consensus on many
features of this theory. One reason for the ongoing discussion
is the lack of experimental evidences or numerical investiga-
tions. Among few exceptions is an interesting paper by
Cubero et al. [14] who have shown that a simple one-
dimensional model of relativistic dynamics favors Jiittner
distribution function [15] as the correct generalization of
Maxwell-Boltzmann (MB) distribution,

[1V) = my(v)>* lexpl- Bmy(v)VZ,, (1)

where d is dimension, Z; is normalization constant, E
=my(v) is relativistic energy, and y(v)=(1-0v?)""? is the
Lorentz factor in natural units with speed of light c=1.
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Although the model used in [14] is one dimensional and
lacks many features of a real physical system, it provides
strong evidence against other generalizations of the Max-
wellian, especially the “modified” Jiittner function [16—18],

md ,y(v)2+d

fMJ(V) = Z_MJ my(v)

exp[— Bwym(v)], )

Jiittner distribution can be used as the cornerstone of our
understanding of relativistic statistical mechanics in the same
manner that MB distribution illuminates the underlying mi-
croscopic roots of classical thermodynamics. The most chal-
lenging step, however, is defining a proper thermometer in
order to relate the Lagrange multiplier B to the temperature
of the system. This problem is mostly treated as trivial in the
literature but one should note that, the correct transformation
of temperature, like any other quantity, depends crucially on
the practical methods we implement for its measurement.

Here, we model a two-dimensional (2D) gaseous system
with realistic features which at the same time allows for
implementation of full relativistic dynamics. Since this
model is both realistic and fully relativistic, it can be used as
an ideal numerical laboratory in order to investigate many
issues concerning relativistic generalization of statistical
thermodynamics. Using standard relativistic transformations,
we obtain directional distribution functions for both the rest
as well as the moving frame. We study these functions nu-
merically using molecular-dynamics simulations of our 2D
model. Our results indicate that Jiittner distribution is the
correct generalization. We also show that the same tempera-
ture parameter is obtained in both frames. Finally we discuss
the implication of our results for a proper temperature trans-
formation. In this regard, while verifying the important con-
cept of local thermal equilibrium, we argue that these meth-
ods are ultimately inconclusive on deciding a correct
temperature transformation law.

II. MODEL

We propose to study an idealized two-dimensional system
of impenetrable hard disks with purely repulsive binary in-
teraction U(r),
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U(r):{+ o, r<o (3)

0, r=o.

The disklike particles move in straight lines at constant speed
and change their momenta instantaneously when they touch
at distance o [19]. Hence, in order to simulate the dynamics,
we must find the next collision and compute the changes in
momenta of the colliding pair, considering the relativistic
laws of conservation of energy and momentum in two-
dimensional space. In order to solve this problem exactly, we
add the assumption that when two hard disks collide, the
force is exerted along the line connecting their centers, r;;
=r;—r;. Therefore, the components of momenta perpendicu-
lar to r;; remain unchanged (p; , =p; ) and the parallel com-
ponents change in the same way as the one-dimensional case
[20],

D= Y0 (20 nE; = (1 +02 )i,

Ei = y(vcm)z[(l + vgm)Ei - 2U6‘171pis“]’ (4)

where hatted quantities refer to momenta after collision and
Vem=(piy+p;)/ (E;+E;) is the collision invariant, relativistic
center-of-mass velocity of the two particles. With the same
rules for particle j, a deterministic, time-reversible canonical
transformation at each collision is defined. The additional
assumption means that particles do not slide on each other
when they collide. In contrast to the one-dimensional model,
such elastic binary collisions lead to equilibrium even if col-
liding particles carry the same rest masses [14]. In our simu-
lation we have used N particles of equal rest masses m that
are constrained to move in a square box of linear size L. We
use periodic boundary condition. Note that in order to simu-
late a stationary system in the rest frame, the center-of-mass
momentum must be put to zero manually. This condition
would automatically be satisfied (if not at each instant but at
least on time average) if fixed reflecting walls were used

[21].

III. RESULTS
A. Rest frame

In order to obtain the equilibrium state of the system we
let the two-dimensional gas equilibrate (typically after 10°N
collisions) and measure velocities of particles at equal times
with respect to laboratory frame. To collect more data, we
repeated this procedure every 10N collisions. Simulation re-
sults for N=100 particles are presented. Particles are initially
placed on a square lattice of constant L/ VN and velocities are
chosen randomly in & vicinity (with 6 a small number) of
Vol = V1—(1/7)? corresponding to mean energy per particle
e=nym. As n—1, the kinetic energy becomes small com-
pared to the rest mass energy, recovering the dynamics of
(classical) nonrelativistic model. The 7—c0 limit, on the
other hand, corresponds to a highly relativistic model.

Theoretically, the x(y) component of Jiittner and modified
Jiittner velocity distribution is obtained by integrating Eqs.
(1) and (2) over vy(v,),
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FIG. 1. (Color online) Equilibrium velocity distributions in the
rest frame I': numerically obtained x component of single-particle
velocity distribution (+) from simulation of N=100 particles of
mass m=0.1. (a) Here, e=2.28m and the corresponding temperature
parameters are 3;=11.4, Byy=7.8. (b) €e=1.04 m, B;=253.1, and
Bump=259.8. A significant deviation from modified Jiittner function
is evident in the relativistic regime. Similar results are obtained for

f(v)')’

m?
[ = ZV(UXP[Kz(ﬁJm Ywy)) + Ko(Bmy(v))], (5)

2
Fn(©) = 2= 0K (Bumy(v.). (©)
MJ

with K, denoting modified Bessel functions of the second
kind [22]. Here, the parameter 3, is determined by means
of the following procedure: we have, for the average energy,

e=E,/N= f dVF(V)my(v). (7)
[v|<1

Computing the right hand side (rhs) of Eq. (7) for Jiittner and
modified Jiittner in the two-dimensional case gives rhs;
=(B*m*+2Bm+2)/(B(Bm+1)) and rhsy;=1/B+m, respec-
tively. By inserting E,,;, N, and m into these equations, the
parameter 3, consistent with Jiittner and modified Jiittner
velocity distribution is uniquely determined.

We now check these results by considering two cases with
n=1.04 and 7=2.28. As shown in Fig. 1, the obtained
single-particle distribution of velocity x-component (+)
agrees with Jiittner function (solid lines) in both regimes and
converges to MB distribution in the nonrelativistic limit. A
significant deviation from modified Jiittner distribution
(dashed lines) is also evident. Exact same diagrams are ob-
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FIG. 2. (Color online) Equilibrium velocity distributions in the
moving frame [’ with relative velocity u=0.5. The system param-
eters are the same as Fig. 1(a) in particular 8;=11.4 and Byy=7.8.
Note the breaking of symmetry in part (a) where the inset shows
more details of the peak.

tained for y component of velocity (not shown). In particular,
the y-component results were fitted with the same parameter
B as the x-component data. This shows that our system has
equilibrated properly through successive collisions.

B. Moving frame

We now turn to the more interesting question of equilib-
rium velocity distribution of a relativistic gas in motion. For
this, we examine the system from the point of view of an
observer who sees that the system’s frame, I'’, is moving
with a uniform velocity u in x direction with respect to his
rest frame, I'. Using the entropy maximization principle, the
single-particle distribution will be determined by an addi-
tional constraint on the system, namely, that of a definite
total momentum p’ [23],

md,y(vr)d+2

L=z,

exp[ B;y(wmy(v')(1-u-v")], (8)

my(v' )2 expl By y(w)my(v')(1 —u - v')]
V) Zyy Ywmy(v')(1-u-v")

flrvu(V’) =
©)

The primed quantities are measured in the moving frame and
the additional y(u) term in the denominators is due to the
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contraction of the moving box that encloses the system [24].
Figure 2 shows the results for a system similar to Fig. 1 with
u=0.5. Note that here, x(y) component of velocities are mea-
sured I'" simultaneously. The solid and dashed lines are the
velocity x(y) component of velocity distribution obtained,
respectively, by integrating Egs. (8) and (9) over v,(v,), e.g.,

2
£1(00) = AT Bm ) o) (1 = ww)))
J

+ Ko(Bmy(u) y(v,)(1 - uv )], (10)

Other components of these distributions cannot be obtained
in closed form and are therefore plotted in Fig. 2 using nu-
merical integration. The parameter B used to fit the data in
Fig. 2 is the same as that of the rest frame. Note that this
parameter is obtained exactly as a function of system param-
eters (m,e€) in I'. However, in I'’, B is a fitting parameter
which turns out to be the same as that in I'.

Therefore as clearly seen from numerical results, our two-
dimensional model shows Jiittner distribution as the correct
relativistic version of MB distribution. The fact that the same
parameter B is obtained from both x and y component ve-
locities shows equilibration. However, more importantly, the
fact that same B is obtained from both I' and I'' frames
seems to indicate the invariance of temperature consistent
with earlier work of Landsberg [6] and previous simulation
results [14]. We now discuss if this agreement can shed light
on the long-lasting question of how temperature transforms
in a moving frame.

IV. PROPER THERMOMETER

A commonly used definition of equilibrium temperature
in the literature is 7=(kz/3)~', where 8 is the Lagrange mul-
tiplier emerging in the velocity distribution function. One
may use this definition and the equality of parameter S in
moving and rest frame (Fig. 2) to deduce that temperature is
Lorentz invariant, 7’=T [14]. However, there is another
point of view which is also consistent with our results. Com-
paring Eq. (8) with the general form of the distribution func-
tion as fo e (@Pe+@P) one is led to believe that the Lagrange
multiplier is y(u)B which gives T' =T/ y(u) [2,3,23].

To see this point better, note that the above definition of
temperature has its roots in the equipartition theorem as well
as basic thermodynamic relation, dE=TdS— PdV+ udN. The
relativistic version of these methods is widely used in order
to find the temperature transformation law [2,4,5,14,23,25].
However, despite the popularity of these approaches, they
are not decisive either [26-28]. To illuminate, consider the
Lorentz-invariant equipartition theorem for a system moving
with velocity u parallel to x axis [7],

Byw)’

; T UP = ’
where the primed quantities are measured in the moving
frame [e.g., m!=7y(v;)m;] and averages ((---)) are taken I'’
simultaneously. One may apply either hypothesis that
((p{xz/m[—uplfx)) or ((y(u)(plfxz/m{—up[x))) are the statistical

(11)
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FIG. 3. (Color online) Local thermal equilibrium in the box as
seen by a moving observer: The profile C(X,Y) is measured I"
simultaneously for the same system as in Fig. 2 with L, and L,,
each divided into ten parts. The expected value of [By(u)]™! is
0.076 which agrees well with the obtained value of C throughout the
lattice.

thermometer of the moving system and find it compatible
with the generalized theorem. Thus, as Landsberg has men-
tioned in [7]: “the argument from equipartition does not en-
able one to discriminate on theoretical grounds between ac-
cepted theory and Lorentz-invariant temperature.”

Furthermore, in some recent papers it is claimed that there
exists no universal and continuous Lorentz transformation of
temperature at all [8,9]. The argument is based on the fact
that black body radiation of a moving body is direction de-
pendent. Therefore, a bath which is thermal in an inertial
frame is nonthermal in a moving frame. Does local thermal
equilibrium (LTE) hold in our system? To check, we divide
the box into n cells of area AA’=(L!L})/n? and calculate the
quantity C={{p;?/m/—up!)), which we consider to be pro-
portional to temperature, in each cell. The numerical result
shown in Fig. 3 indicates that each cell, as seen by a moving
observer, is characterized by a constant value which coin-
cides with the value of [By(x)]™". This indicates that LTE,
which is the necessary condition to introduce a well defined
temperature, is fulfilled at least for our model.
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V. CONCLUDING REMARKS

It seems that the longstanding issue of relativistic thermo-
dynamics is related to the longstanding issue of irreversibil-
ity in thermodynamics. The lack of consensus on these issues
is related to the lack of concise mapping between dynamical
description of a system on one hand and a thermodynamic
description on the other. We cannot define temperature (or
entropy) as an exact function of dynamical variables. In this
work we have modeled a useful, realistic system of a rela-
tivistic gas which overcomes the difficulties associated with
implementation of particle interactions in a relativistically
consistent manner [14,29]. We have shown that Jiittner func-
tion is the correct velocity distribution function in both rest
and moving frames, with components either along or perpen-
dicular to the relative velocity u. Furthermore, our results
indicate that, with a certain definition of statistical thermom-
eter, one can choose B’ =, i.e., a Lorentz-invariant tempera-
ture, without running into inconsistencies. However, S’
=v(u)B could just as well be argued to be a valid choice,
depending on a choice of thermometer. Such inconclusive-
ness inherit in statistical analysis like ours leads one to con-
sider a covariant formulation of thermodynamics where tem-
perature is generalized to a tensorial quantity whose
transformation is no longer an issue [26,30]. In this view
thermodynamic temperature is considered as a proper feature
of a thermodynamic system, much like mass in relativistic
mechanics [31].
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